

Welcome to libkmip

libkmip is an ISO C11 implementation of the Key Management Interoperability
Protocol (KMIP), an OASIS [https://www.oasis-open.org] communication standard for the management of
objects stored and maintained by key management systems. KMIP defines how key
management operations and operation data should be encoded and communicated
between client and server applications. Supported operations include creating,
retrieving, and destroying keys. Supported object types include:

	symmetric/asymmetric encryption keys

For more information on KMIP, check out the OASIS KMIP Technical Committee [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip]
and the OASIS KMIP Documentation [https://docs.oasis-open.org/kmip/spec].

Installation

You can install libkmip from source using make:

$ cd libkmip
$ make
$ make install

See Installation for more information.

Layout

libkmip provides client functionality, allowing developers to integrate the
key management lifecycle into their projects. For more information, check
out the various articles below:

	Installation
	Dependencies

	Building libkmip on Linux

	Uninstalling libkmip

	Changelog
	0.2 - July 12, 2019

	0.1 - November 15, 2018

	Frequently Asked Questions
	There are no results when I run man libkmip. Why not?

	Development
	Getting Started

	Writing Code

	Writing Documentation

	Commit Messages

	Bug Fixes

	Running Tests

	Security
	Handling Sensitive Data

	Reporting a Security Issue

	API
	Client API

	Encoding API

	Utilities API

	Examples
	Demos

	Tests

Installation

Dependencies

Building libkmip requires the following dependencies:

	OpenSSL 1.1.0 [https://www.openssl.org/docs/man1.1.0/]

These may come installed by default on your target system or they may require
separate installation procedures. See each individual dependency’s
documentation for more details.

Building libkmip on Linux

You can install libkmip from source via git:

$ git clone https://github.com/openkmip/libkmip.git
$ cd libkmip
$ make
$ make install

The default build settings will direct make to install libkmip under
/usr/local, which may require sudo access. There are several different
libkmip components that will be installed, including the documentation, the
source code and header files, the shared library, and the example demo
applications. The following list defines the default install directories and
the files that can be found in them:

	
	/usr/local/bin/kmip

	Contains demo libkmip applications showing how to use the supported KMIP
operations.

	
	/usr/local/include/kmip

	Contains the libkmip header files for use in third-party applications.

	
	/usr/local/lib/kmip

	Contains the libkmip shared library, libkmip.so.

	
	/usr/local/src/kmip

	Contains the libkmip source files.

	
	/usr/local/share/doc/kmip/src

	Contains the libkmip documentation source files.

	
	/usr/local/share/doc/kmip/html

	Contains the libkmip documentation HTML files if they have have already
been built.

You can override the build defaults when invoking make install. The
following list defines the build variables used by make and what their
default values are:

	
	PREFIX

	Defines where libkmip will be installed. Defaults to /usr/local.

	
	KMIP

	Defines the common name of the libkmip subdirectories that will be created
under PREFIX. Defaults to kmip.

	
	DESTDIR

	Defines an alternative root of the file system where libkmip will be
installed. Used primarily to test the installation process without needing
to modify the default values of PREFIX or KMIP. Defaults to the
empty string.

For example, to install libkmip under your home directory, you could use the
following command:

$ make PREFIX=$HOME/.local install

This would create all of the normal installation directories (e.g., bin,
include, lib) under $HOME/.local instead of /usr/local.

To ensure that your system is up-to-date after you install libkmip, make sure
to run ldconfig to update the dynamic linker’s run-time bindings.

$ ldconfig

For more information see the project Makefile (insert link here).

Uninstalling libkmip

You can uninstall libkmip using the provided make uninstall target:

$ cd libkmip
$ make uninstall

This will simply remove all of the installation directories and files created
during the above installation process. Like with make install, the default
build settings will direct make to remove libkmip from under
/usr/local, which may require sudo access. If you customize the
installation settings, be sure to use those same settings when uninstalling.

Like the installation process, run ldconfig again after uninstall to make
the dynamic linker is up-to-date.

Changelog

0.2 - July 12, 2019

	Add the BSD 3-clause license to the library

	Add KMIP 2.0 attributes

	Add deep copy utilities for all attribute types

	Upgrade Create support to enable KMIP 2.0 encodings

	Upgrade the unit test suite to use intelligent test tracking

	Upgrade the linked list to support enqueue and double linkage

	Fix an implicit infinite loop in the test suite application

	Fix a usage issue when passing no args to the demo applications

	Fix Travis CI config to redirect OpenSSL install logs to a file

0.1 - November 15, 2018

	Initial release

	Add encoding/decoding support for Symmetric/Public/Private Keys

	Add encoding/decoding support for Create/Get/Destroy operations

	Add KMIP 1.0 - 1.4 support for all supported KMIP structures

	Add an OpenSSL BIO client to securely connect to KMIP servers

	Add demo applications that show how to use the client API

	Add a unit test suite that covers the encoding/decoding library

	Add library documentation built and managed by Sphinx

	Add a Makefile that can build/install static/shared libraries

Frequently Asked Questions

Table of Contents

	Frequently Asked Questions

	There are no results when I run man libkmip. Why not?

There are no results when I run man libkmip. Why not?

The current build and install process does not generate man compatible
documentation output.

The libkmip documentation is written in RST [http://docutils.sourceforge.net/rst.html] and is built as HTML by
sphinx. It is typically installed under /usr/local/share/doc/kmip.
It is available online on ReadTheDocs [https://libkmip.readthedocs.io/].

For more information, see Writing Documentation and
Building libkmip on Linux.

Development

Development for libkmip is open to all contributors. Use the information
provided here to inform your contributions and help the project maintainers
review and accept your work.

Getting Started

File a new issue on the project issue tracker [https://github.com/openkmip/libkmip/issues] on GitHub describing the
work you intend on doing. This is especially recommended for any sizable
contributions, like adding support for a new KMIP operation or object type.
Provide as much information on your feature request as possible, using
information from the KMIP specifications or existing feature support in
libkmip where applicable.

The issue number for your new issue should be included at the end of the
commit message of each patch related to that issue.

If you simply want to request a new feature but do not intend on working on
it, file your issue as normal and the project maintainers will triage it for
future work.

Writing Code

New code should be written in its own git branch, ideally branched from
HEAD on master. If other commits are merged into master after your
branch was created, be sure to rebase your work on the current state of
master before submitting a pull request to GitHub.

New code should generally follow the style used in the surrounding libkmip
codebase.

Writing Documentation

Like new code, new documentation should be written in its own git branch.
All libkmip documentation is written in RST [http://docutils.sourceforge.net/rst.html] format and managed using
sphinx. It can be found under docs/source.

If you are interested in contributing to the project documentation, install
the project documentation requirements:

$ pip install -r doc-requirements.txt

To build the documentation, navigate into the docs directory and run:

$ make html

This will build the libkmip documentation as HTML and place it under the new
docs/build/html directory. View it using your preferred web browser.

Commit Messages

Commit messages should include a single line title (75 characters max) followed
by a blank line and a description of the change, including feature details,
testing and documentation updates, feature limitations, known issues, etc.

The issue number for the issue associated with the commit should be included
at the end of the commit message, if it exists. If the commit is the final one
for a specific issue, use Closes #XXX or Fixes #XXX to link the issue
and close it simultaneously.

Bug Fixes

If you have found a bug in libkmip, file a new issue and use the title format
Bug: <brief description here>. In the body of the issue please provide as
much information as you can, including platform, compiler version, dependency
version, and any stacktraces or error information produced by libkmip related
to the bug. See What to put in your bug report [http://www.contribution-guide.org/#What-to-put-in-your-bug-report] for a breakdown of bug
reporting best practices.

If you are working on a bug fix for a bug in master, follow the general
guidelines above for branching and code development (see Writing Code).

If you are working on a bug fix for an older version of libkmip, your branch
should be based on the latest commit of the repository branch for the version
of libkmip the bug applies to (e.g., branch release-0.1.0 for libkmip 0.1).
The pull request for your bug fix should also target the version branch in
question. If appliable, it will be pulled forward to newer versions of libkmip,
up to and including master.

Running Tests

libkmip comes with its own testing application that primarily covers the
encoding/decoding functionality of the library. It is built with the default
make target and can be run locally by invoking the tests binary:

$ cd libkmip
$ make
$./tests

Security

The security of libkmip is the top priority for the project. Use the
information provided below to inform your security posture.

Handling Sensitive Data

Given that libkmip is an ISO C11 implementation of a key management protocol,
the most sensitive aspect of the library is its handling of memory containing
cryptographic material. All memory allocation and deallocation routines
explicitly zero memory to prevent inadvertent leaks of sensitive data. This
approach relies on the use of the standard memset_s function
(see memset_s [https://en.cppreference.com/w/c/string/byte/memset]) included in C11 Annex K. If memset_s is unavailable at
build time, memory clearing is done through a volatile function pointer to
prevent the optimizer from optimizing away the clearing operation.

Warning

Despite the precautions taken here, it is possible that your build system
will still optimize away the memory clearing operation. If this occurs,
sensitive cryptographic material will be left behind in memory during and
after application execution. Examine your application binary directly to
determine if this is true for your setup.

Other security concerns, such as locking memory pages, are left up to the
parent application and are not the domain of libkmip.

Reporting a Security Issue

Please do not report security issues to the normal GitHub project issue
tracker. Contact the project maintainers directly via email to report
and discuss security issues.

When reporting a security issue, please include as much detail as possible.
This includes a high-level description of the issue, information on how to
cause or reproduce the issue, and any details on specific portions of the
project code base related to the issue.

Once you have submitted an issue, you should receive an acknowledgement.
Depending upon the severity of the issue, the project maintainers will
respond to collect additional information and work with you to address the
security issue. If applicable, a new library subrelease will be produced
across all actively supported releases to address and fix the issue.

API

libkmip is composed of several components:

	an encoding/decoding library

	a client library

	a utilities library

The encoding library transforms KMIP message structures to and from the KMIP
binary TTLV encoding format. The client library uses the OpenSSL BIO library [https://www.openssl.org/docs/man1.1.0/crypto/bio.html]
to create secure connections with a KMIP server, sending and receiving
TTLV-encoded messages. Finally, the utilities library is used to create and
manage the library context and its associated structures which are used by the
client library. Together, these components can be used to conduct secure key
management operations.

Client API

The libkmip Client API supports varying levels of granularity, allowing parent
applications access to everything from the low-level encoded message buffer
up to high-level KMIP operation functions that handle all of the message
building and encoding details automatically.

The following function signatures define the client API and can be found in
kmip_bio.h:

/* High-level API */
int kmip_bio_create_symmetric_key(BIO *, TemplateAttribute *, char **, int *);
int kmip_bio_get_symmetric_key(BIO *, char *, int, char **, int *);
int kmip_bio_destroy_symmetric_key(BIO *, char *, int);

/* Mid-level API */
int kmip_bio_create_symmetric_key_with_context(KMIP *, BIO *, TemplateAttribute *, char **, int *);
int kmip_bio_get_symmetric_key_with_context(KMIP *, BIO *, char *, int, char **, int *);
int kmip_bio_destroy_symmetric_key_with_context(KMIP *, BIO *, char *, size_t);

/* Low-level API */
int kmip_bio_send_request_encoding(KMIP *, BIO *, char *, int, char **, int *);

High-level API

The high-level client API contains KMIP operation functions that simply
require the inputs for a specific KMIP operation. Using these functions, the
library will automatically:

	create the libkmip library context (see The libkmip Context)

	create the request message structure

	encode the request message structure into a request encoding

	send the request encoding to the BIO-connected KMIP server

	receive the response encoding back from the BIO-connected KMIP server

	decode the response encoding into the response message structure

	extract the relevant output from the response message structure

	clean up the library context and the encoding buffers

	handle any errors that occur throughout the request/response process

Because the library context and encoding processes are handled internally, the
parent application has no access to additional debugging or error information
when the KMIP operation fails. There is also no way to control or manage the
dynamic memory allocation process required for the encoding buffers and the
decoding process. If this information and/or capability is needed by the
parent application, consider switching to use the Mid-level API or
Low-level API which provide these capabilities.

The function header details for each of the high-level API functions are
provided below.

	
int kmip_bio_create_symmetric_key(BIO *, TemplateAttribute *, char **, int *)

	Create a symmetric key with the attributes provided in the
TemplateAttribute structure.

	Parameters

	
	BIO* – An OpenSSL BIO structure containing a connection to the
KMIP server that will create the symmetric key.

	TemplateAttribute* – A libkmip TemplateAttribute structure
containing the attributes for the symmetric key (e.g., cryptographic
algorithm, cryptographic length).

	char** – A double pointer that can be used to access the UUID of the
newly created symmetric key.

Note

This pointer will point to a newly allocated block of memory. The
parent application is responsible for clearing and freeing this
memory once it is done using the UUID.

	int* – A pointer that can be used to access the length of the UUID
string pointed to by the above double pointer.

	Returns

	A status code indicating success or failure of the operation. A
negative status code indicates a libkmip error occurred while
processing the request. A positive status code indicates a KMIP error
occurred while the KMIP server processed the request. A status code
of 0 indicates the operation succeeded.

The following codes are returned explicitly by this function. If the
code returned is negative and is not listed here, it is the result of
the request encoding or response decoding process. See
Status Codes for all possible status code values.

	
	KMIP_ARG_INVALID

	One or more of the function arguments are invalid or unset and no
work can be done. This failure can occur if any of the following
are true:

	the OpenSSL BIO pointer is set to NULL

	the TemplateAttribute pointer is set to NULL

	the char ** UUID double pointer is set to NULL

	the int * UUID size pointer is set to NULL

	
	KMIP_MEMORY_ALLOC_FAILED

	Memory allocation failed during the key creation call. This
failure can occur during any of the following steps:

	creation/resizing of the encoding buffer

	creation of the decoding buffer

	
	KMIP_IO_FAILURE

	A BIO error occurred during the key creation call. This
failure can occur during any of the following steps:

	sending the encoded request message to the KMIP server

	receiving the encoded response message from the KMIP server

	
	KMIP_EXCEED_MAX_MESSAGE_SIZE

	The received response message from the KMIP server exceeds the
maximum allowed message size defined in the default libkmip
library context. Switching to the Mid-level API will
allow the parent application to set the max message size in the
library context directly.

	
	KMIP_MALFORMED_RESPONSE

	The received response message from the KMIP server is malformed
and does not contain valid operation result information.

	
int kmip_bio_get_symmetric_key(BIO *, char *, int, char **, int *)

	Retrieve a symmetric key identified by a specific UUID.

	Parameters

	
	BIO* – An OpenSSL BIO structure containing a connection to
the KMIP server that stores the symmetric key.

	char* – A string containing the UUID of the symmetric key to retrieve.

	int – The length of the above UUID string.

	char** – A double pointer that can be used to access the bytes of
the retrieved symmetric key.

Note

This pointer will point to a newly allocated block of memory. The
parent application is responsible for clearing and freeing this
memory once it is done using the symmetric key.

	int* – A pointer that can be used to access the length of the
symmetric key pointed to by the above double pointer.

	Returns

	A status code indicating success or failure of the operation. A
negative status code indicates a libkmip error occurred while
processing the request. A positive status code indicates a KMIP error
occurred while the KMIP server processed the request. A status code
of 0 indicates the operation succeeded.

The following codes are returned explicitly by this function. If the
code returned is negative and is not listed here, it is the result of
the request encoding or response decoding process. See
Status Codes for all possible status code values.

	
	KMIP_ARG_INVALID

	One or more of the function arguments are invalid or unset and no
work can be done. This failure can occur if any of the following
are true:

	the OpenSSL BIO pointer is set to NULL

	the char * UUID pointer is set to NULL

	the int UUID size argument is set to a non-positive integer

	the char ** bytes double pointer is set to NULL

	the int * bytes size pointer is set to NULL

	
	KMIP_MEMORY_ALLOC_FAILED

	Memory allocation failed during the key retrieval call. This
failure can occur during any of the following steps:

	creation/resizing of the encoding buffer

	creation of the decoding buffer

	
	KMIP_IO_FAILURE

	A BIO error occurred during the key retrieval call. This
failure can occur during any of the following steps:

	sending the encoded request message to the KMIP server

	receiving the encoded response message from the KMIP server

	
	KMIP_EXCEED_MAX_MESSAGE_SIZE

	The received response message from the KMIP server exceeds the
maximum allowed message size defined in the default libkmip
library context. Switching to the Mid-level API will
allow the parent application to set the max message size in the
library context directly.

	
	KMIP_MALFORMED_RESPONSE

	The received response message from the KMIP server is malformed
and does not contain valid operation result information.

	
int kmip_bio_destroy_symmetric_key(BIO *, char *, int)

	Destroy a symmetric key identified by a specific UUID.

	Parameters

	
	BIO* – An OpenSSL BIO structure containing a connection to
the KMIP server that stores the symmetric key.

	char* – A string containing the UUID of the symmetric key to destroy.

	int – The length of the above UUID string.

	Returns

	A status code indicating success or failure of the operation. A
negative status code indicates a libkmip error occurred while
processing the request. A positive status code indicates a KMIP error
occurred while the KMIP server processed the request. A status code
of 0 indicates the operation succeeded.

The following codes are returned explicitly by this function. If the
code returned is negative and is not listed here, it is the result of
the request encoding or response decoding process. See
Status Codes for all possible status code values.

	
	KMIP_ARG_INVALID

	One or more of the function arguments are invalid or unset and no
work can be done. This failure can occur if any of the following
are true:

	the OpenSSL BIO pointer is set to NULL

	the char * UUID pointer is set to NULL

	the int UUID size argument is set to a non-positive integer

	
	KMIP_MEMORY_ALLOC_FAILED

	Memory allocation failed during the key destruction call. This
failure can occur during any of the following steps:

	creation/resizing of the encoding buffer

	creation of the decoding buffer

	
	KMIP_IO_FAILURE

	A BIO error occurred during the key destruction call. This
failure can occur during any of the following steps:

	sending the encoded request message to the KMIP server

	receiving the encoded response message from the KMIP server

	
	KMIP_EXCEED_MAX_MESSAGE_SIZE

	The received response message from the KMIP server exceeds the
maximum allowed message size defined in the default libkmip
library context. Switching to the Mid-level API will
allow the parent application to set the max message size in the
library context directly.

	
	KMIP_MALFORMED_RESPONSE

	The received response message from the KMIP server is malformed
and does not contain valid operation result information.

Mid-level API

The mid-level client API is similar to the high-level API except that it
allows the parent application to create and supply the library context to
each KMIP operation function. This allows the parent application to set the
KMIP message settings relevant to its own use case, including the KMIP version
to use for message encoding, the maximum message size to accept from the KMIP
server, and the list of credentials to use when sending a KMIP request
message. The application can also substitute its own memory management system
using the standard memory function hooks provided in the context.

Should an error occur during the request encoding or response decoding
process, error information, including an error message and a stack trace
detailing the function call path triggering the error, can be obtained from
the library context. For more information on the context, see
The libkmip Context.

Using these functions, the library will automatically:

	create the request message structure

	encode the request message structure into a request encoding

	send the request encoding to the BIO-connected KMIP server

	receive the response encoding back from the BIO-connected KMIP server

	decode the response encoding into the response message structure

	extract the relevant output from the response message structure

	clean up the encoding buffers

	handle any errors that occur throughout the request/response process

The function header details for each of the mid-level API functions are
provided below.

	
int kmip_bio_create_symmetric_key_with_context(KMIP *, BIO *, TemplateAttribute *, char **, int *)

	Create a symmetric key with the attributes provided in the
TemplateAttribute structure.

	Parameters

	
	KMIP* – A libkmip KMIP structure containing the context
information needed to encode and decode message structures.

Note

This structure should be properly destroyed by the parent
application once it is done conducting KMIP operations. See
The libkmip Context and Utility Functions for more
information.

	BIO* – An OpenSSL BIO structure containing a connection to the
KMIP server that will create the symmetric key.

	TemplateAttribute* – A libkmip TemplateAttribute structure
containing the attributes for the symmetric key (e.g., cryptographic
algorithm, cryptographic length).

	char** – A double pointer that can be used to access the UUID of the
newly created symmetric key.

Note

This pointer will point to a newly allocated block of memory. The
parent application is responsible for clearing and freeing this
memory once it is done using the UUID.

	int* – A pointer that can be used to access the length of the UUID
string pointed to by the above double pointer.

	Returns

	A status code indicating success or failure of the operation. A
negative status code indicates a libkmip error occurred while
processing the request. A positive status code indicates a KMIP error
occurred while the KMIP server processed the request. A status code
of 0 indicates the operation succeeded.

The following codes are returned explicitly by this function. If the
code returned is negative and is not listed here, it is the result of
the request encoding or response decoding process. See
Status Codes for all possible status code values.

	
	KMIP_ARG_INVALID

	One or more of the function arguments are invalid or unset and no
work can be done. This failure can occur if any of the following
are true:

	the libkmip KMIP pointer is set to NULL

	the OpenSSL BIO pointer is set to NULL

	the TemplateAttribute pointer is set to NULL

	the char ** UUID double pointer is set to NULL

	the int * UUID size pointer is set to NULL

	
	KMIP_MEMORY_ALLOC_FAILED

	Memory allocation failed during the key creation call. This
failure can occur during any of the following steps:

	creation/resizing of the encoding buffer

	creation of the decoding buffer

	
	KMIP_IO_FAILURE

	A BIO error occurred during the key creation call. This
failure can occur during any of the following steps:

	sending the encoded request message to the KMIP server

	receiving the encoded response message from the KMIP server

	
	KMIP_EXCEED_MAX_MESSAGE_SIZE

	The received response message from the KMIP server exceeds the
maximum allowed message size defined in the provided libkmip
library context.

	
	KMIP_MALFORMED_RESPONSE

	The received response message from the KMIP server is malformed
and does not contain valid operation result information.

	
int kmip_bio_get_symmetric_key_with_context(KMIP *, BIO *, char *, int, char **, int *)

	Retrieve a symmetric key identified by a specific UUID.

	Parameters

	
	KMIP* – A libkmip KMIP structure containing the context
information needed to encode and decode message structures.

Note

This structure should be properly destroyed by the parent
application once it is done conducting KMIP operations. See
The libkmip Context and Utility Functions for more
information.

	BIO* – An OpenSSL BIO structure containing a connection to
the KMIP server that stores the symmetric key.

	char* – A string containing the UUID of the symmetric key to retrieve.

	int – The length of the above UUID string.

	char** – A double pointer that can be used to access the bytes of
the retrieved symmetric key.

Note

This pointer will point to a newly allocated block of memory. The
parent application is responsible for clearing and freeing this
memory once it is done using the symmetric key.

	int* – A pointer that can be used to access the length of the
symmetric key pointed to by the above double pointer.

	Returns

	A status code indicating success or failure of the operation. A
negative status code indicates a libkmip error occurred while
processing the request. A positive status code indicates a KMIP error
occurred while the KMIP server processed the request. A status code
of 0 indicates the operation succeeded.

The following codes are returned explicitly by this function. If the
code returned is negative and is not listed here, it is the result of
the request encoding or response decoding process. See
Status Codes for all possible status code values.

	
	KMIP_ARG_INVALID

	One or more of the function arguments are invalid or unset and no
work can be done. This failure can occur if any of the following
are true:

	the libkmip KMIP pointer is set to NULL

	the OpenSSL BIO pointer is set to NULL

	the char * UUID pointer is set to NULL

	the int UUID size argument is set to a non-positive integer

	the char ** bytes double pointer is set to NULL

	the int * bytes size pointer is set to NULL

	
	KMIP_MEMORY_ALLOC_FAILED

	Memory allocation failed during the key retrieval call. This
failure can occur during any of the following steps:

	creation/resizing of the encoding buffer

	creation of the decoding buffer

	
	KMIP_IO_FAILURE

	A BIO error occurred during the key retrieval call. This
failure can occur during any of the following steps:

	sending the encoded request message to the KMIP server

	receiving the encoded response message from the KMIP server

	
	KMIP_EXCEED_MAX_MESSAGE_SIZE

	The received response message from the KMIP server exceeds the
maximum allowed message size defined in the provided libkmip
library context.

	
	KMIP_MALFORMED_RESPONSE

	The received response message from the KMIP server is malformed
and does not contain valid operation result information.

	
int kmip_bio_destroy_symmetric_key_with_context(KMIP *, BIO *, char *, int)

	Destroy a symmetric key identified by a specific UUID.

	Parameters

	
	KMIP* – A libkmip KMIP structure containing the context
information needed to encode and decode message structures.

Note

This structure should be properly destroyed by the parent
application once it is done conducting KMIP operations. See
The libkmip Context and Utility Functions for more
information.

	BIO* – An OpenSSL BIO structure containing a connection to
the KMIP server that stores the KMIP managed object.

	char* – A string containing the UUID of the KMIP managed object to
destroy.

	int – The length of the above UUID string.

	Returns

	A status code indicating success or failure of the operation. A
negative status code indicates a libkmip error occurred while
processing the request. A positive status code indicates a KMIP error
occurred while the KMIP server processed the request. A status code
of 0 indicates the operation succeeded.

The following codes are returned explicitly by this function. If the
code returned is negative and is not listed here, it is the result of
the request encoding or response decoding process. See
Status Codes for all possible status code values.

	
	KMIP_ARG_INVALID

	One or more of the function arguments are invalid or unset and no
work can be done. This failure can occur if any of the following
are true:

	the libkmip KMIP pointer is set to NULL

	the OpenSSL BIO pointer is set to NULL

	the char * UUID pointer is set to NULL

	the int UUID size argument is set to a non-positive integer

	
	KMIP_MEMORY_ALLOC_FAILED

	Memory allocation failed during the key destruction call. This
failure can occur during any of the following steps:

	creation/resizing of the encoding buffer

	creation of the decoding buffer

	
	KMIP_IO_FAILURE

	A BIO error occurred during the key destruction call. This
failure can occur during any of the following steps:

	sending the encoded request message to the KMIP server

	receiving the encoded response message from the KMIP server

	
	KMIP_EXCEED_MAX_MESSAGE_SIZE

	The received response message from the KMIP server exceeds the
maximum allowed message size defined in the provided libkmip
library context.

	
	KMIP_MALFORMED_RESPONSE

	The received response message from the KMIP server is malformed
and does not contain valid operation result information.

Low-level API

The low-level client API differs from the mid and high-level APIs. It provides
a single function that is used to send and receive encoded KMIP messages. The
request message structure construction and encoding, along with the response
message structure decoding, is left up to the parent application. This provides
the parent application complete control over KMIP message processing.

Using this function, the library will automatically:

	send the request encoding to the BIO-connected KMIP server

	receive the response encoding back from the BIO-connected KMIP server

	handle any errors that occur throughout the send/receive process

The function header details for the low-level API function is provided below.

	
int kmip_bio_send_request_encoding(KMIP *, BIO *, char *, int, char **, int *)

	Send a KMIP encoded request message to the KMIP server.

	Parameters

	
	KMIP* – A libkmip KMIP structure containing the context
information needed to encode and decode message structures. Primarily
used here to control the maximum response message size.

Note

This structure should be properly destroyed by the parent
application once it is done conducting KMIP operations. See
The libkmip Context and Utility Functions for more
information.

	BIO* – An OpenSSL BIO structure containing a connection to
the KMIP server.

	char* – A string containing the KMIP encoded request message bytes.

	int – The length of the above encoded request message.

	char** – A double pointer that can be used to access the bytes of
the received KMIP encoded response message.

Note

This pointer will point to a newly allocated block of memory. The
parent application is responsible for clearing and freeing this
memory once it is done processing the encoded response message.

	int* – A pointer that can be used to access the length of the
encoded response message pointed to by the above double pointer.

	Returns

	A status code indicating success or failure of the operation. A
negative status code indicates a libkmip error occurred while
processing the request. A positive status code indicates a KMIP error
occurred while the KMIP server processed the operation. A status code
of 0 indicates the operation succeeded. The following codes are
returned explicitly by this function.

	
	KMIP_ARG_INVALID

	One or more of the function arguments are invalid or unset and no
work can be done. This failure can occur if any of the following
are true:

	the libkmip KMIP pointer is set to NULL

	the OpenSSL BIO pointer is set to NULL

	the char * encoded request message bytes pointer is set to
NULL

	the int encoded request message bytes size argument is set
to a non-positive integer

	the char ** encoded response message bytes double pointer is
set to NULL

	the int * encoded response message bytes size pointer is set
to NULL

	
	KMIP_MEMORY_ALLOC_FAILED

	Memory allocation failed during message handling. This failure can
occur during the following step:

	creation of the decoding buffer

	
	KMIP_IO_FAILURE

	A BIO error occurred during message handling. This failure can
occur during any of the following steps:

	sending the encoded request message to the KMIP server

	receiving the encoded response message from the KMIP server

	
	KMIP_EXCEED_MAX_MESSAGE_SIZE

	The received response message from the KMIP server exceeds the
maximum allowed message size defined in the provided libkmip
library context.

Status Codes

The following tables list the status codes that can be returned by the client
API functions. The first table lists the status codes related to the
functioning of libkmip.

	Status Code

	Value

	KMIP_OK

	0

	KMIP_NOT_IMPLEMENTED

	-1

	KMIP_ERROR_BUFFER_FULL

	-2

	KMIP_ERROR_ATTR_UNSUPPORTED

	-3

	KMIP_TAG_MISMATCH

	-4

	KMIP_TYPE_MISMATCH

	-5

	KMIP_LENGTH_MISMATCH

	-6

	KMIP_PADDING_MISMATCH

	-7

	KMIP_BOOLEAN_MISMATCH

	-8

	KMIP_ENUM_MISMATCH

	-9

	KMIP_ENUM_UNSUPPORTED

	-10

	KMIP_INVALID_FOR_VERSION

	-11

	KMIP_MEMORY_ALLOC_FAILED

	-12

	KMIP_IO_FAILURE

	-13

	KMIP_EXCEED_MAX_MESSAGE_SIZE

	-14

	KMIP_MALFORMED_RESPONSE

	-15

	KMIP_OBJECT_MISMATCH

	-16

The second table lists the operation result status codes that can be returned
by a KMIP server as the result of a successful or unsuccessful operation.

	Status Code

	Value

	KMIP_STATUS_SUCCESS

	0

	KMIP_STATUS_OPERATION_FAILED

	1

	KMIP_STATUS_OPERATION_PENDING

	2

	KMIP_STATUS_OPERATION_UNDONE

	3

Encoding API

The libkmip Encoding API supports encoding and decoding a variety of message
structures and substructures to and from the KMIP TTLV encoding format. The
Client API functions use the resulting encoded messages to communicate
KMIP operation instructions to the KMIP server. While each substructure
contained in a request or response message structure has its own corresponding
set of encoding and decoding functions, parent applications using libkmip
should only need to use the encoding and decoding functions for request and
response messages respectively.

The following function signatures define the encoding API and can be found in
kmip.h:

int kmip_encode_request_message(KMIP *, const RequestMessage *);
int kmip_decode_response_message(KMIP *, ResponseMessage *);

The function header details for each of the encoding API functions are
provided below.

	
int kmip_encode_request_message(KMIP *, const RequestMessage *)

	Encode the request message and store the encoding in the library context.

	Parameters

	
	KMIP* – A libkmip KMIP structure containing the context
information needed to encode and decode message structures.

	RequestMessage* – A libkmip RequestMessage structure containing
the request message information that will be encoded. The structure
will not be modified during the encoding process.

	Returns

	A status code indicating success or failure of the encoding
process. See Status Codes for all possible status code values.
If KMIP_OK is returned, the encoding succeeded.

	
int kmip_decode_response_message(KMIP *, ResponseMessage *)

	Decode the encoding in the library context into the response message.

	Parameters

	
	KMIP* – A libkmip KMIP structure containing the context
information needed to encode and decode message structures.

	ResponseMessage* – A libkmip ResponseMessage structure
that will be filled out by the decoding process.

Note

This structure will contain pointers to newly allocated
substructures created during the decoding process. The calling
function is responsible for clearing and freeing these
substructures once it is done processing the response message.
See (ref here) for more information.

Warning

Any attributes set in the structure before it is passed in to this
decoding function will be overwritten and lost during the decoding
process. Best practice is to pass in a pointer to a freshly
initialized, empty structure to ensure this does not cause
application errors.

	Returns

	A status code indicating success or failure of the decoding
process. See Status Codes for all possible status code values.
If KMIP_OK is returned, the decoding succeeded.

Utilities API

The libkmip Utilities API supports a wide variety of helper functions and
structures that are used throughout libkmip, ranging from the core library
context structure that is used for all encoding and decoding operations to
structure initializers, deallocators, and debugging aides.

Warning

Additional capabilities are included in libkmip that may not be discussed
here. These capabilities are generally for internal library use only and
are subject to change in any release. Parent applications that use these
undocumented features should not expect API stability.

The libkmip Context

The libkmip library context is a structure that contains all of the settings
and controls needed to create KMIP message encodings. It is defined in
kmip.h:

typedef struct kmip
{
 /* Encoding buffer */
 uint8 *buffer;
 uint8 *index;
 size_t size;

 /* KMIP message settings */
 enum kmip_version version;
 int max_message_size;
 LinkedList *credentials;

 /* Error handling information */
 char *error_message;
 size_t error_message_size;
 LinkedList *error_frames;

 /* Memory management function pointers */
 void *(*calloc_func)(void *state, size_t num, size_t size);
 void *(*realloc_func)(void *state, void *ptr, size_t size);
 void (*free_func)(void *state, void *ptr);
 void *(*memset_func)(void *ptr, int value, size_t size);
 void *state;
} KMIP;

The structure includes the encoding/decoding buffer, KMIP message settings,
error information, and memory management hooks.

The Encoding/Decoding Buffer

The library context contains a pointer to the main target buffer, buffer,
used for both encoding and decoding KMIP messages. This buffer should only
be set and accessed using the defined context utility functions defined below.
It should never be accessed or manipulated directly.

KMIP Message Settings

The library context contains several attributes that are used throughout the
encoding and decoding process.

The version enum attribute is used to control what KMIP structures are
included in operation request and response messages. It should be set by the
parent application to the desired KMIP version:

enum kmip_version
{
 KMIP_1_0 = 0,
 KMIP_1_1 = 1,
 KMIP_1_2 = 2,
 KMIP_1_3 = 3,
 KMIP_1_4 = 4
};

The max_message_size attribute defines the maximum size allowed for
incoming response messages. Since KMIP message encodings define the total size
of the message at the beginning of the encoding, it is important for the
parent application to set this attribute to a reasonable default suitable for
its operation.

The credentials list is intended to store a set of authentication
credentials that should be included in any request message created with the
library context. This is primarily intended for use with the
Mid-level API.

Each of these attributes will be set to reasonable defaults by the
kmip_init context utility and can be overridden as needed.

Error Information

The library context contains several attributes that are used to track and
store error information. These are only used when errors occur during the
encoding or decoding process. Once an error is detected, a libkmip stack
trace will be constructed, with each frame in the stack containing the
function name and source line number where the error occurred to facilitate
debugging.

typedef struct error_frame
{
 char *function;
 int line;
} ErrorFrame;

The original error message will be captured in the error_message
attribute for use in logging or user-facing status messages.

See the context functions below for using and accessing this error
information.

Memory Management

The library context contains several function pointers that can be used to
wrap or substitute common memory management utilities. All memory management
done by libkmip is done through these function pointers, allowing the calling
application to easily substitute its own memory management system. Note
specifically the void *state attribute in the library context; it is
intended to contain a reference to the parent application’s custom memory
management system, if one exists. This attribute is passed to every call made
through the context’s memory management hooks, allowing the parent application
complete control of the memory allocation process. By default, the state
attribute is ignored in the default memory management hooks. The kmip_init
utility function will automatically set these hooks to the default memory
management functions if any of them are unset.

Utility Functions

The following function signatures define the Utilities API and can be found
in kmip.h:

/* Library context utilities */
void kmip_clear_errors(KMIP *);
void kmip_init(KMIP *, void *, size_t, enum kmip_version);
void kmip_init_error_message(KMIP *);
int kmip_add_credential(KMIP *, Credential *);
void kmip_remove_credentials(KMIP *);
void kmip_reset(KMIP *);
void kmip_rewind(KMIP *);
void kmip_set_buffer(KMIP *, void *, size_t);
void kmip_destroy(KMIP *);
void kmip_push_error_frame(KMIP *, const char *, const int);

/* Message structure initializers */
void kmip_init_protocol_version(ProtocolVersion *, enum kmip_version);
void kmip_init_attribute(Attribute *);
void kmip_init_request_header(RequestHeader *);
void kmip_init_response_header(ResponseHeader *);

/* Message structure deallocators */
void kmip_free_request_message(KMIP *, RequestMessage *);
void kmip_free_response_message(KMIP *, ResponseMessage *);

/* Message structure debugging utilities */
void kmip_print_request_message(RequestMessage *);
void kmip_print_response_message(ResponseMessage *);

Library Context Utilities

The libkmip context contains various fields and attributes used in various
ways throughout the encoding and decoding process. In general, the context
fields should not be modified directly. All modifications should be done
using one of the context utility functions described below.

The function header details for each of the relevant context utility functions
are provided below.

	
void kmip_init(KMIP *, void *, size_t, enum kmip_version)

	Initialize the KMIP context.

This function initializes the different fields and attributes used by the
context to encode and decode KMIP messages. Reasonable defaults are chosen
for certain fields, like the maximum message size and the error message
size. If any of the memory allocation function hooks are NULL, they
will be set to system defaults.

	Parameters

	
	KMIP* – The libkmip KMIP context to be initialized. If NULL,
the function does nothing and returns.

	void* – A void pointer to a buffer to be used for encoding and
decoding KMIP messages. If setting up the context for use with the
Mid-level API it is fine to use NULL here.

	size_t – The size of the above buffer. If setting up the context for
use with the Mid-level API it is fine to use 0 here.

	kmip_version (enum) – A KMIP version enumeration that will be used by
the context to decide how to encode and decode messages.

	Returns

	None

	
void kmip_clear_errors(KMIP *)

	Clean up any error-related information stored in the KMIP context.

This function clears and frees any error-related information or structures
contained in the context, should any exist. It is intended to be used
between encoding or decoding operations so that repeated use of the
context is possible without causing errors. It is often used by other
context handling utilities. See the utility source code for more details.

	Parameters

	
	KMIP* – The libkmip KMIP context containing error-related
information to be cleared.

	Returns

	None

	
void kmip_init_error_message(KMIP *)

	Initialize the error message field of the KMIP context.

This function allocates memory required to store the error message string
in the library context. If an error message string already exists, nothing
is done. Primarily used internally by other utility functions.

	Parameters

	
	KMIP* – The libkmip KMIP context whose error message memory
should be allocated.

	Returns

	None

	
int kmip_add_credential(KMIP *, Credential *)

	Add a Credential structure to the list of credentials used by the
KMIP context.

This function dynamically adds a node to the LinkedList of
Credential structures stored by the context. These credentials are
used automatically by the Mid-level API when creating KMIP
operation requests.

	Parameters

	
	KMIP* – The libkmip KMIP context to add a credential to.

	Credential* – The libkmip Credential structure to add to the
list of credentials stored by the context.

	Returns

	A status code indicating if the credential was added to the
context. The code will be one of the following:

	
	KMIP_OK

	The credential was added successfully.

	
	KMIP_UNSET

	The credential was not added successfully.

	
void kmip_remove_credentials(KMIP *)

	Remove all Credential structures stored by the KMIP context.

This function clears and frees all of the LinkedList nodes used to
store the Credential structures associated with the context.

Note

If the underlying Credential structures were themselves
dynamically allocatted, they must be freed separately by the parent
application.

	Parameters

	
	KMIP* – The libkmip KMIP context containing credentials to
be removed.

	Returns

	None

	
void kmip_reset(KMIP *)

	Reset the KMIP context buffer so that encoding can be reattempted.

This function resets the context buffer to its initial empty starting
state, allowing the context to be used for another encoding attempt if
the prior attempt failed. The buffer will be overwritten with zeros to
ensure that no information leaks across encoding attempts. This function
also calls kmip_clear_errors to clear out any error information that
was generated by the encoding failure.

	Parameters

	
	KMIP* – The libkmip KMIP context that contains the buffer
needing to be reset.

	Returns

	None

	
void kmip_rewind(KMIP *)

	Rewind the KMIP context buffer so that decoding can be reattempted.

This function rewinds the context buffer to its initial starting state,
allowing the context to be used for another decoding attempt if the
prior attempt failed. This function also calls kmip_clear_errors to
clear out any error information that was generated by the decoding
failure.

	Parameters

	
	KMIP* – The libkmip KMIP context that contains the buffer
needing to be rewound.

	Returns

	None

	
void kmip_set_buffer(KMIP *, void *, size_t)

	Set the encoding buffer used by the KMIP context.

	Parameters

	
	KMIP* – The libkmip KMIP context that will contain the buffer.

	void* – A void pointer to a buffer to be used for encoding and
decoding KMIP messages.

	size_t – The size of the above buffer.

	Returns

	None

	
void kmip_destroy(KMIP *)

	Deallocate the content of the KMIP context.

This function resets and deallocates all of the fields contained in the
context. It calls kmip_reset and kmip_set_buffer to clear the
buffer and overwrite any leftover pointers to it. It calls
kmip_clear_credentials to clear out any referenced credential
information. It also unsets all of the memory allocation function hooks.

Note

The buffer memory itself will not be deallocated by this function, nor
will any of the Credential structures if they are dynamically
allocatted. The parent application is responsible for clearing and
deallocating those segments of memory.

	
void kmip_push_error_frame(KMIP *, const char *, const int)

	Add an error frame to the stack trace contained in the KMIP context.

This function dynamically adds a new error frame to the context stack
trace, using the information provided to record where an error occurred.

	Parameters

	
	KMIP* – The libkmip KMIP context containing the stack trace.

	char* – The string containing the function name for the new
stack trace error frame.

	int – The line number for the new stack trace error frame.

	Returns

	None

Message Structure Initializers

There are many different KMIP message structures and substructures that are
defined and supported by libkmip. In general, the parent application should
zero initialize any libkmip structures before using them, like so:

RequestMessage message = {0};

In most cases, optional fields in KMIP substructures are excluded from the
encoding process when set to 0. However, in some cases 0 is a valid value
for a specific optional field. In these cases, we set these values to
KMIP_UNSET. The parent application should never need to worry about
manually initialize these types of fields. Instead, the following initializer
functions should be used for the associated structures to handle properly
setting default field values.

The function header details for each of the relevant initializer functions
are provided below.

	
void kmip_init_protocol_version(ProtocolVersion *, enum kmip_version)

	Initialize a ProtocolVersion structure with a KMIP version
enumeration.

	Parameters

	
	ProtocolVersion* – A libkmip ProtocolVersion structure to be
initialized.

	kmip_version (enum) – A KMIP version enumeration whose value will be
used to initialize the ProtocolVersion structure.

	Returns

	None

	
void kmip_init_attribute(Attribute *)

	Initialize an Attribute structure.

	Parameters

	
	Attribute* – A libkmip Attribute structure to be initialized.

	Returns

	None

	
void kmip_init_request_header(RequestHeader *)

	Initialize a RequestHeader structure.

	Parameters

	
	RequestHeader* – A libkmip RequestHeader structure to be
initialized.

	Returns

	None

	
void kmip_init_response_header(ResponseHeader *)

	Initialize a ResponseHeader structure.

	Parameters

	
	ResponseHeader* – A libkmip ResponseHeader structure to be
initialized.

	Returns

	None

Message Structure Deallocators

Along with structure initializers, there are corresponding structure
deallocators for every supported KMIP structure. The deallocator behaves
like the initializer; it takes in a pointer to a specific libkmip structure
and will set all structure fields to safe, initial defaults. If a structure
field is a non NULL pointer, the deallocator will attempt to clear and
free the associated memory.

Note

A deallocator will not free the actual structure passed to it. It will
only attempt to free memory referenced by the structure fields. The parent
application is responsible for freeing the structure memory if it was
dynamically allocated and should set any pointers to the structure to
NULL once it is done with the structure.

Given how deallocators handle memory, they should only ever be used on
structures that are created from the decoding process (i.e., structures
created on the heap). The decoding process dynamically allocates memory to
build out the message structure in the target encoding and it is beyond the
capabilities of the client API or the parent application to manually free
all of this memory directly.

Warning

If you use a deallocator on a structure allocated fully or in part on the
stack, the deallocator will attempt to free stack memory and will trigger
undefined behavior. This can lead to program instability and may cause
the application to crash.

While there are deallocators for every supported structure, parent
applications should only need to use the deallocators for request and response
messages. Given these are the root KMIP structures, using these will free
all associated substructures used to represent the message.

The function header details for each of the deallocator functions are provided
below.

	
void kmip_free_request_message(KMIP *, RequestMessage *)

	Deallocate the content of a RequestMessage structure.

	Parameters

	
	KMIP* – A libkmip KMIP structure containing the context
information needed to encode and decode message structures. Primarily
used here for memory handlers.

	RequestMessage* – A libkmip RequestMessage structure whose
content should be reset and/or freed.

	Returns

	None

	
void kmip_free_response_message(KMIP *, ResponseMessage *)

	Deallocate the content of a ResponseMessage structure.

	Parameters

	
	KMIP* – A libkmip KMIP structure containing the context
information needed to encode and decode message structures. Primarily
used here for memory handlers.

	ResponseMessage* – A libkmip ResponseMessage structure whose
content should be reset and/or freed.

	Returns

	None

Message Structure Debugging Utilities

If the parent application is using the Low-level API, it will have
access to the RequestMessage and ResponseMessage structures used to
generate the KMIP operation encodings. These structures can be used with
basic printing utilities to display the content of these structures in an
easy to view and debug format.

The function header details for each of the printing utilities are provided
below.

	
void kmip_print_request_message(RequestMessage *)

	Print the contents of a RequestMessage structure.

	Parameters

	
	RequestMessage* – A libkmip RequestMessage structure to be
displayed.

	Returns

	None

	
void kmip_print_response_message(ResponseMessage *)

	Print the contents of a ResponseMessage structure.

	Parameters

	
	ResponseMessage* – A libkmip ResponseMessage structure to be
displayed.

	Returns

	None

Examples

To demonstrate how to use libkmip, several example applications are built
and deployed with the library to get developers started.

Demos

Three demo applications are included with libkmip, one for each of the
following KMIP operations:

	Create

	Get

	Destroy

If libkmip is built, the demo applications can be found in the local build
directory. If libkmip is installed, the demo applications can also be found
in the bin directory, by default located at /usr/local/bin/kmip.

Run any of the demo applications with the -h flag to see usage
information.

Create Demo

The Create demo, demo_create.c, uses the Low-level API to issue
a KMIP request to the KMIP server to create a symmetric key. The application
manually creates the library context and initalizes it. It then manually
builds the request message structure, creating the following attributes for
the symmetric key:

	cryptographic algorithm (AES)

	cryptographic length (256 bits)

	cryptographic usage mask (Encrypt and Decrypt usage)

The demo application encodes the request and then sends it through the
low-level API to retrieve the response encoding. It decodes the response
encoding into the response message structure and then extracts the UUID of
the newly created symmetric key.

Get Demo

The Get demo, demo_get.c, uses the Mid-level API to issue a
KMIP request to the KMIP server to retrieve a symmetric key. The application
manually creates the library context and initializes it. It sets its own
custom memory handlers to override the default ones supplied by libkmip and
then invokes the mid-level API with the UUID of the symmetric key it wants
to retrieve.

The client API internally builds the corresponding request message, encodes
it, sends it via BIO to the KMIP server, retrieves the response encoding, and
then decodes the response into the corresponding response message structure.
Finally, it extracts the symmetric key bytes and copies them to a separate
block of memory that will be handed back to the demo application. Finally, it
cleans up the buffers used for the encoding and decoding process and cleans
up the response message structure.

Destroy Demo

The Destroy demo, demo_destroy.c, use the High-level API to
issue a KMIP request to the KMIP server to destroy a symmetric key. The
application invokes the high-level API with the UUID of the symmetric key it
wants to destroy.

The client API internally builds the library context along with the
corresponding request message. It encodes the request, sends it via BIO to
the KMIP server, retrieves the response encoding, and then decodes the
response into the corresponding response message structure. Finally, it
extracts the result of the KMIP operation from the response message structure
and returns it.

Tests

A test application is also included with libkmip to exercise the encoding and
decoding capabilities for all support KMIP features. The source code for this
application, tests.c, contains numerous examples of how to build and use
different libkmip structures.

Index

 K

K

 	
 	kmip_add_credential (C function)

 	kmip_bio_create_symmetric_key (C function)

 	kmip_bio_create_symmetric_key_with_context (C function)

 	kmip_bio_destroy_symmetric_key (C function)

 	kmip_bio_destroy_symmetric_key_with_context (C function)

 	kmip_bio_get_symmetric_key (C function)

 	kmip_bio_get_symmetric_key_with_context (C function)

 	kmip_bio_send_request_encoding (C function)

 	kmip_clear_errors (C function)

 	kmip_decode_response_message (C function)

 	kmip_destroy (C function)

 	kmip_encode_request_message (C function)

 	kmip_free_request_message (C function)

 	
 	kmip_free_response_message (C function)

 	kmip_init (C function)

 	kmip_init_attribute (C function)

 	kmip_init_error_message (C function)

 	kmip_init_protocol_version (C function)

 	kmip_init_request_header (C function)

 	kmip_init_response_header (C function)

 	kmip_print_request_message (C function)

 	kmip_print_response_message (C function)

 	kmip_push_error_frame (C function)

 	kmip_remove_credentials (C function)

 	kmip_reset (C function)

 	kmip_rewind (C function)

 	kmip_set_buffer (C function)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to libkmip

 		
 Installation

 		
 Dependencies

 		
 Building libkmip on Linux

 		
 Uninstalling libkmip

 		
 Changelog

 		
 0.2 - July 12, 2019

 		
 0.1 - November 15, 2018

 		
 Frequently Asked Questions

 		
 There are no results when I run man libkmip. Why not?

 		
 Development

 		
 Getting Started

 		
 Writing Code

 		
 Writing Documentation

 		
 Commit Messages

 		
 Bug Fixes

 		
 Running Tests

 		
 Security

 		
 Handling Sensitive Data

 		
 Reporting a Security Issue

 		
 API

 		
 Client API

 		
 High-level API

 		
 Mid-level API

 		
 Low-level API

 		
 Status Codes

 		
 Encoding API

 		
 Utilities API

 		
 The libkmip Context

 		
 Utility Functions

 		
 Examples

 		
 Demos

 		
 Create Demo

 		
 Get Demo

 		
 Destroy Demo

 		
 Tests

_static/up-pressed.png

_static/up.png

